Ok so here’s the rules

  • I just bet on red every time
  • I start with 1 dollar
  • every time I lose, I triple my previous bet
  • every time I win I restart

I’m going to simulate 10 games

  • Game 1 - Bet $1 Lose
  • Game 2 - Bet $3 Lose
  • Game 3 - Bet $9 Win $18
  • Game 4 - Bet $1 Lose
  • Game 5 - Bet $3 Lose
  • Game 6 - Bet $9 Win $18
  • Game 7 - Bet $1 Lose
  • Game 8 - Bet $3 Lose
  • Game 9 - Bet $9 Lose
  • Game 10 - Bet $18 Win $36

In this simulation I’m losing at a rate of 70%. In reality the lose rate is closer to 52%. I put in $54 but I’m walking away with $72, basically leaving the building with $18.

Another example. Let’s pretend I walk in with $100,000 to bet with. I lose my first 10 games and win the 11th.

  • 1 lose
  • 3 lose
  • 9 lose
  • 27 lose
  • 81 lose
  • 243 lose
  • 729 lose
  • 2187 lose
  • 6561 lose
  • 19683 lose
  • 59049 win $118098

$88573 spent out of pocket, $118098 won

Walk out with roughly $29525.

I get most casinos won’t let you be that high but it’s a pretty extreme example anyway, the likelyhood of losing 10/11 games on 48% odds is really unlikely.

So help me out here, what am I missing?

  • edgemaster72@lemmy.world
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    So looking at your would-be-a-table-if-formatting-allowed, I noticed the net winning was close to 1/3 of the net wager. Given that the premise is tripling a losing bet, I thought it a little too convenient to have an expected profit of 1/3 so I recreated the table in a spreadsheet then started tinkering with the multiplier after a loss. I’m not smart enough to explain why it’s the case, but it appears that the limit of the net winnings / net wager as your number of bets increases is n-2 / n, where n is the factor you multiply by after losing a bet.